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LElTER TO THE EDITOR 

Neural networks: translation-, rotation- and scale-invariant 
pattern recognition 

V S Dotsenko 
Landau Institute for Theoretical Physics, Academy of Sciences of the USSR, V-334 Kosygina 
2, 117940 GSP-1, MOSCOW, USSR 

Received 29 April 1988 

Abstract. A neural network model which is capable of recognising transformed versions 
of a set of learnt patterns is proposed. The group of transformations includes global 
translations, rotations and scale transformations. The neural firing thresholds are used as 
additional degrees of freedom. 

Statistical models of neural networks, proposed by Hopfield (1982) and Little (1974), 
have been proved to function as systems of a content-addressable memory with high 
robustness (Amit et al 1985, Hopfield 1984, Hopfield et a1 1983). It was shown that, 
in terms of such rather simple king spin systems, a variety of very promising memory 
models could be formulated. Among them are models of hierarachical memory 
developed by Parga and Virasoro (1986), Dotsenko (1985,1986), Gutfreund (1987), 
layered systems developed by Domany et a1 (1986), systems with random asymmetric 
interactions investigated by Hertz et al (1986) and Feigelman and Ioffe (1987), diluted 
systems investigated by Derrida et al (1987) and Treves and Amit (1988), an elegant 
model with biologically motivated asymmetry of interactions invented by Shinomoto 
(1987), a neural system of a temporal association with ordered asymmetry of interac- 
tions developed by Sompolinsky and Kanter (1986), and many others. 

All these systems are supposed: (i)  to store in the memory a certain number of 
spin patterns {i$"'} (6  = *l,  i = 1,2, .  . . , N, a = 1,2, .  . . , p )  and (ii) to retrieve the 
correct learnt pattern from a distorted one via simple dynamical equations for spin 
variables. Correspondingly, the problems which are considered are: (i)  the learning 
rules (how the parameters of the models are defined in terms of and the 'architec- 
ture' of the models, and (ii) the process of retrieval. 

The key parameters for the learning process are the overlaps: 

which describe how close the patterns in the phase space are. Accordingly the effective 
variables 

1 
N i  

""'( t )  = - c 6;"' (Ti(  t )  

describe how close the current spin pattern {ai( t ) }  is to the learnt patterns. 
The problem which will be considered in this letter and which cannot be solved 

via direct minimisation of the M in the original Hopfield model is the following. Any 
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two pictures which, by common sense, are identical (or close) but differ by a uniform 
shift (rotation, scale transformation, etc) could be treated as absolutely different in 
terms of overlaps (1) and (2). As far as I know there are only two papers, by von der 
Malsburg and Bienenstock (1987) and Kree and Zippelius (1988), in which this problem 
was considered. The idea of the present letter was initiated by the approach of Kree 
and Zippelius (1988) who extended an architecture of the Hopfield model for the 
recognition of topologically isomorphic classes of gruphs. The present investigation 
is restricted only to translation-, rotation- and scale-invariant recognition of patterns 
of the U and is performed almost in terms of the original Hopfield model. 

The idea is to use neural firing thresholds as additional degrees of freedom and to 
introduce the parameters of global translations a, rotations 8 and scale transformations 
A as additional 'slow' dynamical variables via d0)([A&]+a), where do)(*) is the 
proposed pattern to be recognised and [. . .] denotes the whole part. Since the sites 
of the lattice will be assumed to form a 2~ 'screen', the discrete vector r will be used 
instead of the subscript i. 

The model should be composed in such a way that the minimisation of the variables 

over a, 8 and A should occur first. After that should be an ordinary retrieval process 
of the Hopfield model: 

Jo H = -f J,o( r ) a (  r ' )  Jrrr = - 1 ,$"I( r ) [ ( a ) (  r ' )  
rr' N a = i  

(4) 

where the starting values of the U should be given by the optimal pattern c~'~'([A*$*r]+ 
a*). 

It will be shown that, using the degrees of freedom of neural firing thresholds 
(which are external fields for spins), these two stages can be incorporated self- 
consistently in one model. For simplicity, only translations will be considered first. 
The generalisation for rotations and scaling will be straightforward. 

Let the model be described by the Hamiltonian: 

The relaxation dynamics of the Ising variables is described by the usual discrete 
equations: 

[ -dr, t )  with probability p -  = 1 - p +  
where 

h ( r ;  t ) = Z  J,.a(r'; t ) + E ( r ;  t ) .  
r' 

(7) 

The proposed pattern d 0 ) ( r )  is supposed to be mapped onto the E as follows: 

It could be assumed that, for example, periodic boundary conditions are imposed. 
E ( r ;  t )  = h o d 0 ) ( r + a ( t ) ) .  (8) 

Here a( t )  is an additional dynamic variable which obeys the relaxation equation: 

d ( t )  = a ( t  + 1) - a ( r )  = - S H / S a +  q ( t )  (9) 
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where q ( t )  is an ordinary temperature noise. It is assumed that N - k  ho/Jo<< 1, hoc< T 
and 

a ( r ;  t = 0) = a' ' ) ( r ) .  (10) 

Equation (7) for the local field h ( r ;  t )  can be represented as follows: 

Therefore, as long as M("'( t )  << h,/ Jo the second term in (1 1) dominates and the spins 
follow the fields { boa'"}: 

(a( r ;  t ) )  = do)( r + a( t ) )  tanh /3ho 

= /3hoa"'(r + a( t ) ) .  

In this case the effective potential for the variable a is 

E ( a )  = -$'hi Jlr,a( ' ) (r  + a ) d ' ) (  r' + a )  
W' 

P 
=- fNP2hiJ0  C ( M ~ ' ( u ) ) ~  

a = l  

where 

Therefore the search for the 'correct' pattern at this stage is a wandering over the 
states of the N-dimensional hypercube along the ZD 'subspace' defined by d o ) ( a ) .  
This is in contrast to the usual relaxation in the Hopfield model where the wandering 
could proceed in all directions on the hypercube since all the spins are independent. 

It is supposed that, for some a*, the proposed pattern {U")} has a finite overlap 
with one of the learnt patterns, say {['"o)}: 

and has no finite overlap with the others: M'"'( a) - O( 1/ N1") (CY # a'). 

spatial correlation length R,, i.e. 
It is also important to assume that all the patterns we are dealing with have finite 

1 - a(')( r)a( ')( r +  R) - exp( - 1  R I/ R,) 
N ,  

1 -E f ' " ' ( r ) ~ ' " ' ( r + R )  - exp(-IRI/R,). 
N r  

Otherwise there will be no 'attraction' of the patterns. 

potential: 
The effective attraction to the correct pattern will therefore be described by the 

&,(a)- -$NP2h3,q:,exp(-la -a*I/R,). (17) 
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Obviously the ‘localisation’ near the pattern { @ a o ’ }  ((la - a * ] )  - R,) will take place 
if 

4Np3hiJ0qt03 In( N /Rf ) .  (18) 

In other words, if 

the pattern {do’} ‘localises’ eventually near the pattern {.$‘“~’}. 
Of course, the true minimum of the Hamiltonian ( 5 )  is the pattern { i $ “ n ’ }  and not 

the {do)( r + a * ) }  one. The retrieval of the pattern {.$‘“o’} will be due to the dynamical 
evolution of the U. This second stage will start when M‘”o’(a) reaches the value of 
ho/Jo. The function of the model at this stage corresponds to the ordinary Hopfield 
model in which the initial pattern d O ’ ( r + a * )  has a finite overlap with that in one of 
the stored memories. 

There is a danger, however, that, due to a small value of the critical overlap qc 
(equation (19)), the ‘trajectory’ of a‘”‘(a) could appear in a ‘region of attraction’ of 
some other learnt pattern. Let us calculate the probability of such an event. 

The number of states which have an overlap 3 q  ( q  << 1) with some given state is 

n ( q )  - 2 N  exp(-4Nq2). (20) 
Therefore the probability that { d o ’ ( r +  a ) }  will appear (with the overlap q )  near one 
of the p stored uncorrelated patterns is 

p ( q )  - - P ( N / R ~  exp(-fNq2). (21) 

P ( q , ) -  a ( N 2 / R f )  exp(-iNqf) = c~Rf(N/Rf)~-~’ / ’0~4.  (22) 

T > T, = J 0 ( 2 h 2 / J i ) ’ / 3  

For p = aN the probability of being ‘caught up’ by one of the ‘wrong’ patterns is 

It means that the system will function smoothly at the temperatures 

(23) 
The restriction T <  Jo and a < a,= 0.138 (Amit et a1 1985) valid for the Hopfield model 
hold here too. 

The generalisation of the above considerations for rotations and scaling is straight- 
forward. The fields ~ ( r )  of the Hamiltonian ( 5 )  should be defined as follows: 

c ( r ;  t )  = h o a ( ” ( [ A ( t ) 8 * ( t ) r ] + a ( t ) ) .  (24) 

The effective potential for the variables A, 6 and a will have a form: 

where 

The overlap with the pattern near the optimal values of A*, e* and a* could 
be represented as 

M ( ” ~ ) ( A ,  e, a)-q,exp(-IA --A*/ /AJ  exp(-)8-e*)/ec) exp(-(a-a*I/R,) (27) 
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where 

8,- R,/m A,- R,d% 

are the ‘correlation angle’ and the ‘correlation scale’, respectively. 
Therefore the critical overlap q, needed for the ‘localisation’ near the pattern 

{.$“o’} ((l8-8*I)- e,, ( [ A  -A*))-A,) remains the same as in (19). Consequently the 
model considered will exhibit good retrieval in the temperature interval T, < T < .lo, 
where T, is given by (23). 

Obviously the model discussed in this letter could be easily modified to include a 
biologically motivated asymmetry of interactions, dilution and so on. Its present (very 
simple) form could be considered as a demonstration of a rather promising idea of 
using neural thresholds as additional degrees of freedom. The model seems rather 
convenient for computer tests. 

Numerous discussions with M V Feigelman are gratefully acknowledged. 
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